Usiamo “Base 10” ogni giorno … è il nostro sistema di numeri decimali., 9
••••••••••
10
Start back at 0 again, but add 1 on the left
•••••••••• •
11
•••••••••• ••
12
⋮
•••••••••• •••••••••
19
•••••••••• ••••••••••
20
Start back at 0 again, but add 1 on the left
•••••••••• •••••••••• •
21
And so on!,
But there are other bases!,
Binary (Base 2) has only 2 digits: 0 and 1
We count like this:
0
Start at 0
•
1
Then 1
••
10
Start back at 0 again, but add 1 on the left
•••
11
••••
100
start back at 0 again, and add one to the number on the left… …, ma quel numero è già a 1 quindi torna anche a 0 … … e 1 è aggiunto alla posizione successiva a sinistra
•••••
101
••••••
110
•••••••
111
••••••••
1000
Inizia a 0 di nuovo (per tutti e 3 cifre), aggiungere 1 sulla sinistra
•••••••••
1001
E così via!,
Guarda come è fatto in questa piccola dimostrazione (premi play):
Prova anche Decimal e prova altre basi come 3 o 4. Ti aiuterà a capire come funzionano tutte queste diverse basi.,>2
•••
10
Start back at 0 again, but add 1 on the left
••••
11
•••••
12
••••••
20
Start back at 0 again, but add 1 on the left
•••••••
21
••••••••
22
•••••••••
100
start back at 0 again, and add one to the number on the left.,.. … ma quel numero è già a 2 quindi torna anche a 0 … … e 1 viene aggiunto alla posizione successiva a sinistra
••••••••••
101
E così via!,
Then 1
••
2
•••
3
••••
10
Start back at 0 again, but add 1 on the left
•••••
11
••••••
12
•••••••
13
••••••••
20
Start back at 0 again, but add 1 on the left
•••••••••
21
And so on!,
••••
4
•••••
10
Start back at 0 again, but add 1 on the left
••••••
11
•••••••
12
••••••••
13
•••••••••
14
••••••••••
20
Start back at 0 again, but add 1 on the left
•••••••••• •
21
And so on!,•••
10
Start back at 0 again, but add 1 on the left
•••••••
11
••••••••
12
•••••••••
13
••••••••••
14
•••••••••• •
15
•••••••••• ••
20
Start back at 0 again, but add 1 on the left
•••••••••• •••
21
And so on!,••
6
Up to 6
•••••••
10
Start back at 0 again, but add 1 on the left
••••••••
11
•••••••••
12
⋮
•••••••••• •••
16
•••••••••• ••••
20
Start back at 0 again, but add 1 on the left
•••••••••• •••••
21
And so on!,td>7
Up to 7
••••••••
10
Start back at 0 again, but add 1 on the left
•••••••••
11
••••••••••
12
⋮
•••••••••• •••••
17
•••••••••• ••••••
20
Start back at 0 again, but add 1 on the left
•••••••••• •••••••
21
And so on!,>
Up to 8
•••••••••
10
Start back at 0 again, but add 1 on the left
••••••••••
11
•••••••••• •
12
⋮
•••••••••• •••••••
18
•••••••••• ••••••••
20
Start back at 0 again, but add 1 on the left
•••••••••• •••••••••
21
And so on!,
Decimal (Base 10) has 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9
Well …, 9
••••••••••
10
Start back at 0 again, but add 1 on the left
•••••••••• •
11
•••••••••• ••
12
⋮
•••••••••• •••••••••
19
•••••••••• ••••••••••
20
Start back at 0 again, but add 1 on the left
•••••••••• •••••••••• •
21
And so on!,igit than Decimal, so “A” is used, like this:
Decimal:
0
1
2
3
4
5
6
7
8
9
10
11
12
.,..
Undecimal:
0
1
2
3
4
5
6
7
8
9
A
10
11
…, are used:
Decimal:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
.,..
Duodecimal:
0
1
2
3
4
5
6
7
8
9
A
B
10
11
…,dc475e”>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
.,..,=”c3c5dc475e”>
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10
11
.,..,75e”>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
.,..,d=”c3c5dc475e”>
4
5
6
7
8
9
A
B
C
D
E
F
G
H
J
K
10
.,..
Sessagesimale (Base 60)
Sessagesimale funziona come un orologio!
Non ci sono codici speciali, solo i numeri da 0 a 59, come usiamo con ore e minuti.
Il vantaggio principale è che 60 può essere equamente diviso per 2, 3, 4, 5, 6, 10, 12, 15, 20 e 30, che ci rende facile dividere ore e minuti.,
Maggiori informazioni sulle Basi
La Base numerica è anche chiamata Radix
Come mostrare la Base
Per mostrare quale base ha un numero, metti la base in basso a destra in questo modo:
Lascia un commento