illustrazione del XVI secolo di Archimede nella vasca da bagno, con la corona di Gerolamo in basso a destra
L’esclamazione ‘Eureka!’è attribuito all’antico studioso greco Archimede. Secondo quanto riferito, ha proclamato ” Eureka! Eureka!”dopo aver fatto un passo in un bagno e notato che il livello dell’acqua è aumentato, dopo di che ha improvvisamente capito che il volume di acqua spostata deve essere uguale al volume della parte del suo corpo che aveva sommerso., (Questa relazione non è ciò che è noto come principio di Archimede – che si occupa della spinta verso l’alto sperimentata da un corpo immerso in un fluido.) Si rese poi conto che il volume di oggetti irregolari poteva essere misurato con precisione, un problema precedentemente intrattabile. Si dice che sia stato così desideroso di condividere la sua scoperta che saltò fuori dalla sua vasca da bagno e corse nudo per le strade di Siracusa.,
L’intuizione di Archimede portò alla soluzione di un problema posto da Gerone di Siracusa, su come valutare la purezza di una corona votiva d’oro irregolare; aveva dato al suo orafo l’oro puro da usare, e giustamente sospettava di essere stato truffato dall’orafo togliendo l’oro e aggiungendo lo stesso peso dell’argento., Le attrezzature per pesare oggetti con una discreta precisione esistevano già, e ora che Archimede poteva anche misurare il volume, il loro rapporto avrebbe dato la densità dell’oggetto, un importante indicatore di purezza (poiché l’oro è quasi due volte più denso dell’argento e quindi ha un peso significativamente maggiore per lo stesso volume).
Questa storia apparve per la prima volta in forma scritta nei libri di architettura di Vitruvio, due secoli dopo che presumibilmente ebbe luogo., Alcuni studiosi hanno dubitato dell’accuratezza di questo racconto, sulla base del fatto che la corona votiva era un oggetto raffinato, quindi una corona impura avrebbe spostato l’acqua solo minuziosamente, rispetto a una pura. I mezzi precisi necessari per misurare questa differenza minima non erano disponibili al momento. Per il problema posto ad Archimede, però, c’è un metodo semplice che non richiede attrezzature di precisione: bilanciare la corona contro oro puro su una scala in aria, e poi immergere sia la corona e l’oro in acqua contemporaneamente., Se i volumi sono uguali, la scala rimane in equilibrio, il che significa che le loro densità sono le stesse e quindi la corona deve essere in oro puro. Ma se il volume della corona è maggiore, l’aumento della galleggiabilità provoca uno squilibrio. Maggiore volume della corona significa che la sua densità è inferiore a quella dell’oro, e quindi la corona non potrebbe essere oro puro. Lo stesso Galileo Galilei intervenne sulla controversia, suggerendo un disegno per un equilibrio idrostatico che potesse essere usato per confrontare il peso a secco di un oggetto con il peso dello stesso oggetto immerso nell’acqua.
Lascia un commento